wrzesień, 2019
abstrakt
Tym, co niewątpliwie cechuje pojęcia matematyczne, jest ich „abstrakcyjność”. Zakładając, że „abstrakty matematyczne” tworzą hierarchię opisywaną za pomocą teorii typów logicznych, możemy każdemu z nich przypisać „stopień abstrakcji”.
abstrakt
Tym, co niewątpliwie cechuje pojęcia matematyczne, jest ich „abstrakcyjność”. Zakładając, że „abstrakty matematyczne” tworzą hierarchię opisywaną za pomocą teorii typów logicznych, możemy każdemu z nich przypisać „stopień abstrakcji”. W tym sensie powiemy, że dany abstrakt matematyczny cechuje się „wyższym stopniem abstrakcji” od innego abstraktu matematycznego, gdy posiada wyższy typ w hierarchii typów logicznych. W tym samym sensie możemy również powiedzieć, że abstrakty niższego rzędu stanowią podstawę do konstrukcji abstraktów rzędu wyższego. Sama zaś „operacja abstrakcji”, prowadząca do tworzenia abstraktów wyższych rzędów, może być rozumiana jako tworzenie klas abstrakcji odpowiednich relacji równoważnościowych.
Celem referatu jest przedstawienie konstrukcji prowadzącej do redukcji stopnia abstrakcji wybranych „abstraktów matematycznych” w oparciu o A. Tarskiego system geometrii bezpunktowej. Pokażemy, że stopień abstrakcji pewnych obiektów matematycznych, tj. liczb naturalnych, liczb rzeczywistych oraz podstawowych pojęć geometrii, można zredukować do najniższego możliwego stopnia, przy którym obiekty te pojawiają się je jako rezultat „aktu jednorazowej abstrakcji”, czyli że mogą być one rozumiane jako własności indywiduów.
Bibliografia
- Gruszczyński, R., Pietruszczak, A. „Full Development of Tarski’s Geometry of Solids”, The Bulletin of Symbolic Logic, Vol. 14. Number 4. Dec. 2008, ss. 481–540.
- Borkowski, L., „Logika formalna. Systemy logiczne, wstęp do metalogiki”, PWN, Warszawa, 1977.
- Sitek, G., „The Notion of the Diameter of Mereological Ball in Tarski’s Geometry of Solids”, Logic and Logical Philosophy, Vol. 26 (2017), ss. 531–562.
dzień i godzina
(Czwartek) 17:30 - 18:00
sala
CTW-219 (Centrum Transferu Wiedzy)
organizator
Sekcja LogikiPrzewodnicząca Sekcji: dr hab. Joanna Golińska-Pilarek (UW)
Sekretarz Sekcji: dr Michał Zawidzki (UW)
obradom przewodniczy

prof. dr hab. Jerzy Pogonowski
Uniwersytet im. Adama Mickiewicza w Poznaniu